
24 The Delphi Magazine Issue 65

The Data Shape
OLE DB Provider
by Guy Smith-Ferrier

Much of the functionality of
TClientDataSet is imple-

mented in regular ADO recordsets,
and, therefore, their ADOExpress
TDataSet implementations. You
can persist data using SaveToFile
and LoadFromFile, create custom
(‘fabricated’) recordsets and
create briefcase applications. The
Data Shape OLE DB Provider was
introduced to ADO in v2.0 and it
provides much of the remaining
functionality of TClientDataSet.

In this article we will look at this
OLE DB Provider and reveal what it
is capable of and what additional
functionality it has beyond
TClientDataSet. We will look at
hierarchical recordsets, parame-
terised hierarchies, reshaping,
using aggregate functions, group-
ing data using COMPUTE, adding
blank fields and creating custom
shapes.

Hierarchical Recordsets
The most common use of the Data
Shape OLE DB Provider (also
known as MSDataShape) is to
create hierarchical recordsets,
also referred to as master/detail
relationships, parent/child rela-
tionships and (by Microsoft only)
the child side of the relationship is
called a chapter. At first sight these
hierarchical recordsets provide
the same functionality as Delphi’s
own master/detail relationships
and this is where we will start.

To use MSDataShape, add a
TADOQuery to a form. In the Connec-
tion String editor select the
MSDataShape OLE DB Provider. In
Data Source on the Connection page
enter an ODBC Data Source Name.
MSDataShape can be used with any
OLE DB Provider which returns
rectangular data by setting the
Data Provider value in the All page
of the Connection String editor. For
simplicity we will stick with ODBC
and use the Northwind database

which is installed with many
Microsoft products. That’s the
ConnectionString done. Set ADO-
Query1.SQL to

SELECT * FROM CUSTOMERS

open the query, and add a
TDataSource and a TDBGrid to view
the results. You shouldn’t be too
surprised at the result as it is
exactly the same as executing this
SQL normally. MSDataShape is
looking for commands which are
specific to itself. All other SQL
statements are passed on to the
OLE DB Provider which actually
retrieves and updates the data.
MSDataShape is looking for SQL
commands which begin with SHAPE.
Change the SQL to this:

SHAPE {SELECT * FROM CUSTOMERS}
APPEND ({SELECT * FROM ORDERS}
RELATE CustomerID TO
CustomerID) AS ORDERS

then re-open the query and you
should, once again, see the same
result: that is, a list of all of the cus-
tomers. However, if you cursor to
the right hand side of the grid you
will see a column full of DATASET
values. Click it so that an ellipsis
(...) appears. Click the ellipsis and
a grid of all of the children belong-
ing to the selected parent will be
shown.

As Bob Swart has pointed out in
the past, this may be clever but it
isn’t the best user interface imple-
mentation possible. The solution
to this user interface obstacle
using MSDataShape is the same as
for TClientDataSet: add persistent
fields. When you do this you will
see an ORDERS persistent field at the
bottom of the list. This is a
TDataSetField. Now add a TADO-
DataSet and set its DataSetField to
ADOQuery1ORDERS. Show the new
TADODataSet in a grid and you have

a master/detail relationship work-
ing in same way as a regular Delphi
master/detail relationship.

Take a look at the SHAPE com-
mand which we entered. It exe-
cutes two SELECT statements
immediately the dataset is opened:

SELECT * FROM CUSTOMERS

and

SELECT * FROM ORDERS

The MSDataShape provider then
forms a relationship between the
two result sets based on the crite-
ria supplied in the RELATE clause.

The first benefit of MSDataShape
is that it is efficient. Often pro-
grammers will use an SQL JOIN to
achieve a similar result to that of
MSDataShape using something like
the following command:

SELECT * FROM Customers, Orders
WHERE Customers.CustomerID=
Orders.CustomerID

In the Northwind database the Cus-
tomers table holds 91 records of
268 bytes each. The Orders table
holds 830 records of 206 bytes
each. This SELECT command
retrieves 393,420 bytes (that is,
830*(268+206)). The equivalent
MSDataShape command retrieves
under half of this amount, 195,368
bytes (that is, (91*268)+(830*
206)). Also consider that
MSDataShape is simply using the
server to retrieve data. It is not
using the server to perform any
other work. The additional work of
forming the relationship between
the parent and child is performed
by the client. Consequently, this
solution is more scalable because
the load has been moved from the
server to the client.

Of course, this doesn’t take into
account orphaned children. An
orphaned child is one which has
no parent. With modern databases
having built in referential integrity
this is unlikely to happen as
frequently as it once used to, but it
could occur by design. Assume
that your Customers table holds a
field called County which is a
lookup into a Counties table. The

January 2001 The Delphi Magazine 25

counties of England are a relatively
volatile affair with counties ceas-
ing to exist (eg Rutland and Avon)
and new counties arriving every
few years (or like Rutland being
resurrected). Consequently, it
might be acceptable to allow the
value in the County field to be blank.
An SQL JOIN between Counties and
Customers would retrieve only
those customers that had a County
but a SHAPE would return all of the
customers regardless and would
include data which was inaccessi-
ble through the hierarchy.

Unfortunately the most recent
ADOExpress patch (October 2000)
at the time of writing added a prob-
lem which previous patches didn’t
suffer from. If you set the LockType
to batch optimistic and use
MSDataShape your result set will
appear to be empty.

Parameterised Hierarchies
The same net result as above can
be achieved with the following
SELECT statement:

SHAPE {SELECT * FROM CUSTOMERS}
APPEND
({SELECT * FROM ORDERS WHERE
CustomerID=?}

RELATE CustomerID TO PARAMETER
0) AS ORDERS

This is a parameterised hierarchy.
It uses the CustomerID in the parent
as a parameter to be passed to the
child statement (parameters in
SQL are marked with a ?). This
differs from the previous example,
not in the data which is returned,
but in the way the data is returned.

When the dataset is opened the
SELECT * FROM CUSTOMERS command
is executed but the SELECT * FROM
ORDERS... is not. Instead, the child
statement is executed each and

every time a new parent is
selected.

There are a number of conse-
quences to this approach.
Parameterised hierarchies are
faster to open than regular hierar-
chies because they retrieve less
data initially. In addition, they
do not suffer from retrieving
orphaned children. The data in the
child dataset is more fresh because
it is retrieved when it is needed.
However, parameterised hierar-
chies cannot be disconnected from
the database, cannot be persisted
(that is, saved locally), cannot be
passed across process boundaries
and cannot be reshaped (we will
cover reshaping shortly).

The ADO Recordset interface,
around which the ADOExpress
TDataSets are based, supports a
dynamic property called Cache
Child Rows. This property allows a
regular hierarchical recordset to
retrieve its children on an as
needed basis in the same way as a
parameterised hierarchy. By
default it is True, so all records are
retrieved when the parent is
opened. Unfortunately, this
dynamic property won’t help you
because you need to set it on an
existing recordset before it is
opened. ADOExpress doesn’t pro-
vide you with a means to access
the recordset after it has been
created but before it is opened.

Back to the parameterised hier-
archies. At first sight it seems that
the disadvantages outweigh the
advantages, but consider the
following regular SHAPE hierarchy:

SHAPE {SELECT * FROM CUSTOMERS
WHERE Country=’UK’}

APPEND ({SELECT * FROM ORDERS}
RELATE CustomerID TO
CustomerID) AS ORDERS

This applies a WHERE clause to CUS-
TOMERS so that only UK customers
are retrieved. Unfortunately, the
child SELECT statement retrieves all
orders including those for custom-
ers outside the UK. Clearly this is
wasteful. One way to solve this is
to use a parameterised hierarchy:

SHAPE {SELECT * FROM CUSTOMERS
WHERE Country=’UK’}

APPEND ({SELECT * FROM ORDERS
WHERE CustomerID=?}

RELATE CustomerID TO PARAMETER
0) AS ORDERS

A better way to solve this is to
avoid using a parameterised hier-
archy (because of the significant
restrictions it imposes) and apply
the WHERE clause to each child
SELECT statement as in Listing 1.

Parent, Child And
GrandChild Hierarchies
You are not restricted to just one
level of parent/child relationships.
You can build hierarchies with
many siblings (parent/child/
child) and hierarchies with many
levels of child (parent/child/
grandchild). The syntax is no
different from a simple parent/
child relationship but, like most
complicated SQL statements, it
does take a little while to formulate
and even longer to read and
understand.

Assume that we have another
hierarchy represented by the
following SHAPE command:

SHAPE {SELECT * FROM ORDERS}
APPEND ({SELECT * FROM
[Order Details]}

RELATE OrderID TO OrderID) AS
OrderDetails

(The square brackets around Order
Details cope with the embedded
space in the table name. A better
solution to this problem is simply
not to embed spaces in your table
names or field names.)

The resulting SHAPE command
for Customers, Orders and Order
Details is shown in Listing 2.

The trick is to formulate each
statement separately and to use
round brackets around the inner
SHAPE commands.

SHAPE {SELECT * FROM CUSTOMERS WHERE Country=’UK’}
APPEND ({SELECT ORDERS.* FROM ORDERS, CUSTOMERS
WHERE Orders.CustomerID=Customers.CustomerID
AND Customers.Country=’UK’}
RELATE CustomerID TO CustomerID) AS ORDERS

SHAPE {SELECT * FROM CUSTOMERS}
APPEND (
(SHAPE {SELECT * FROM ORDERS} AS rsOrders
APPEND ({SELECT * FROM [Order Details]}
RELATE OrderID TO OrderID) AS OrderDetails)
RELATE CustomerID TO CustomerID) AS ORDERS

➤ Above: Listing 1 ➤ Below: Listing 2

26 The Delphi Magazine Issue 65

Reshaping
Reshaping is one of the few
enhancements which were made
to MSDataShape in ADO 2.1 (there
were no further enhancements
in ADO versions 2.5 or 2.6).
Reshaping allows you to use ele-
ments of an existing SHAPE com-
mand for other purposes. In order
to reuse elements they must be
named. Change the original SHAPE
statement so that the child SELECT
statement is given the name
rsOrders:

SHAPE {SELECT * FROM CUSTOMERS}
APPEND ({SELECT * FROM ORDERS}
AS rsOrders

RELATE CustomerID TO
CustomerID) AS ORDERS

Now the rsOrders recordset can be
used in its own right. The visibility
of the name is connection-wide so
the same connection must be
shared between the two datasets.
Add a TADOConnection to take the
place of the ConnectionString in
ADOQuery1.

Add a TADOQuery for the same
connection and set its SQLproperty
to:

SHAPE rsOrders

Now the Orders recordset can be
used independently of the
hierarchy.

Aggregate Functions
One of the great features of
TClientDataSet is maintained
aggregates. If you’ve never used
maintained aggregates before then
you should take a look at them.

Have you ever been asked to total
a column in a grid ? If so then
TClientDataSet’s maintained aggre-
gates are a good way to solve this
problem. MSDataShape has a simi-
lar set of features and here I’ll
explain how they work.

Assume that we have the regular
SHAPE command in Listing 3. The
only special detail here is that the
child recordset contains a calcu-
lated column, ItemTotalValue,
which is UnitPrice * Quantity. Now
add the following clause to the end
of the command:

, SUM(
OrderDetails.ItemTotalValue)
AS OrderTotalValue

The SUM function sums a set of
values in a child recordset. The
expression in the SUM function must
refer to a value in a named
recordset in the SHAPE command.
Recordsets do not have default
names so you must explicitly
assign them one using AS.

Now add persistent fields to the
dataset and add a grid to show the
orders. Add another TADODataSet
and grid to show the details. Run
the program and make changes to
the UnitPrice of any of the Order
Details. As you start making the
change you won’t be at all sur-
prised to see the gutter on the left
hand side of the grid change to an
I-beam to indicate that the record
is in edit mode. But look at the
parent record in the grid above it
and you will see that the parent has

also gone into edit mode. Now
complete the change to the
UnitPrice and you will see that the
ItemTotalValue field in the child is
not updated to reflect the new
change. This shouldn’t be too sur-
prising because this field was cal-
culated by the DBMS and not by
ADO. However, you can update
ItemTotalValue manually, so go
ahead and do this. Move off the
record to post it and the parent
record’s OrderTotalValue is not
updated. But if you go back to the
parent record and move away
from the parent record to post it
the OrderTotalValue column will be
correctly updated.

The full list of aggregate func-
tions supported by MSDataShape
is shown in Table 1.

Now add the following clause to
the end of the SHAPE command:

, COUNT(OrderDetails.OrderID)
AS OrderCount

Clearly this is just a simple count of
the number of items which the
order has. Run the program and
add a new Order Detail. You will
see the same behaviour as before
where the parent record also goes
into edit mode when the child
record is added and, when the
parent record is posted, the count
changes to reflect the new number
of items.

Unfortunately, all is not well
here. Try deleting an Order Detail.
The parent record does not go into
edit mode and it does not register
that the child has been deleted,
and so both the SUM and the COUNT
are wrong. They do catch up cor-
rectly the next time they are
updated, as a result of a child
record being added or edited, but
that isn’t much consolation. Sadly,
this is a bug in ADOExpress and
not in ADO. It can be rectified by
adding a BeforeDelete event to the
child to ensure that the parent is
updated:

SHAPE {SELECT * FROM ORDERS}
APPEND ({SELECT [Order Details].*, UnitPrice * Quantity AS ItemTotalValue
FROM [Order Details]}

RELATE OrderID TO OrderID) AS OrderDetails

➤ Listing 3

Function Description

Min Minimum value

Max Maximum value

Count Number of rows

Sum Sum of rows

Avg Average of rows

STDev Standard Deviation of rows

Any Any value of a column (assuming all values are the same)

➤ Table 1

28 The Delphi Magazine Issue 65

procedure
TForm1.ADODataSet1BeforeDelete(
DataSet: TDataSet);

begin
ADOQuery1.Edit;
ADOQuery1.Post;

end;

Grouping Data
Using COMPUTE
There is another interesting key-
word in the SHAPE language and it is
COMPUTE. It is very similar to SQL’s
GROUP BYclause. It is used like this:

SHAPE {SELECT * FROM Employees}
AS Employees

COMPUTE Employees BY Title

If you view the result of this SHAPE
command in a grid it will be almost
identical to the following SQL com-
mand:

SELECT TITLE FROM EMPLOYEES
GROUP BY TITLE

This SQL command gives you a list
of all of the unique titles in the
Employees table. This can be a very
useful device because databases
often do not include all of the
lookup tables which they should.
Such is the case with the Northwind
database: there is no table for
Titles. The GROUP BY clause allows,
amongst other things, a virtual
table to be created from the exist-
ing data.

The COMPUTE clause does all that
the GROUP BY clause does but with
an important difference: it includes
the records which form part of
each group. If you add persistent
fields to the dataset for the SHAPE
command you will see an Employees
TDataSetField. Just as with the
hierarchical recordsets, add a
TADODataSet and set its DataSet-
Field to the Employees persistent
field and you will be able to view
the records which make up the
group.

Adding Blank Fields
Have you ever wished that calcu-
lated fields were not read-only?
From time to time a problem
comes along where it would be
really useful if you could add a
couple of extra temporary fields to
a dataset. Calculated fields don’t

cut it. You can set their values in
the TDataSet.OnCalcField event
but, apart from that, they are
read-only. MSDataShape provides
you with a means to add temporary
fields to a result set which are visi-
ble only from the result set. The fol-
lowing SHAPE command does just
that:

SHAPE {SELECT * FROM CUSTOMERS}
APPEND NEW adBoolean AS
Selected

It adds a new Boolean field called
Selected to the CUSTOMERS result set.
This field can be read and written
to in the same way as any other
field but the underlying table is
never updated. When the result set
is closed the values entered into
the temporary fields are perma-
nently lost. The Selected field in
this SHAPE can be used to allow the
user to mark a number of records
for some kind of action. You can, of
course, already achieve this using
TDBGrid by including dgMultiSelect
in the Options but the selection is a
little bit too transient for my liking
because your selection is cleared
the moment you stop selecting.

Custom Shapes
A logical extension of the ability to
add additional blank fields to exist-
ing recordsets is to create a
recordset which consists entirely
of blank fields and does not attach
to any such data source. The fol-
lowing SHAPE command achieves
this:

SHAPE APPEND
NEW adVarChar(2) AS STATE,
NEW adVarChar(30) AS NAME

As there is no original source of
data you must set the
ConnectionString’s Data Provider
(in the All page) to None.

There is a very good reason why
you might want to create such an
empty recordset. Consider all of
those temporary tables which us
programmers love to create. Many
programmers want to copy data to
a local store and work on the data
locally for various reasons. At this
point it usually gets a bit messy,
with everyone creating temporary

tables and worrying about where
to put them safely and how to tidy
up the temporary tables when the
application crashes.

Custom Shapes are a better solu-
tion because the temporary table
is completely held in memory.
There is no worrying about creat-
ing a local table and having a local
DBMS, or worrying where the tem-
porary table can be safely located
and how to tidy it up. Of course,
the whole table is held in memory
and there is no denying that this
places an upper limit on the size of
the table.

You can achieve this same affect
using TClientDataSet and TADO-
DataSet by defining their FieldDefs
at design-time and then right click-
ing and selecting Create DataSet.

These two solutions provide
almost exactly the same benefits
as Custom Shapes. However, these
datasets cannot be opened: they
must be created. The distinction is
not important to all applications
but if you ever need to set Active to
False and then set Active to True
again with a fabricated TClient-
DataSet or TADODataSet then you
will get an error. Unfortunately,
the Delphi 5 IDE does exactly this
when you create persistent fields
at design-time (note that this is not
the case with versions prior to
Delphi 5). Using a Custom Shape
you do not suffer from these limita-
tions as they can be opened and
closed just like any other dataset.
One of the consequences of this
difference is that Custom Shapes
are more suitable for use as in-
memory lookup tables than
TClientDataSet or TADODataSet.

Conclusion
MSDataShape offers a collection of
features which would take quite
some additional effort to recreate
without its aid.

It can be used with any OLE DB
Provider and so it is an excellent
example of a consumer. The use of
hierarchical recordsets can
improve performance. Reshaping
allows you to look at data from
different viewpoints. Aggregate
functions provide much of the
same functionality as TClient-
DataSet’s aggregate functions. In

January 2001 The Delphi Magazine 29

addition, COMPUTE provides the same facilities as GROUP
BY, but it lets you get at the records in the group. You
can also add read/write temporary fields to existing
recordsets and you can create custom recordsets to
replace temporary tables.

All in all that’s a lot of features for just one OLE DB
Provider, so do enjoy exploring the possibilities in
your own applications!

Guy Smith-Ferrier is a Senior Delphi Consultant for
Borland’s Professional Services Organisation in the
UK. He continues his ambition to play the piano
better than a deaf one-armed monkey but is
beginning to realise that he has met his match. You
can contact Guy at gsmithferrier@capellasoft.com

© 2001 Capella Software Ltd
The opinions of the author are not necessarily the opinions
of Borland

	Hierarchical Recordsets
	Parameterised Hierarchies
	Parent, Child And GrandChild Hierarchies
	Reshaping
	Aggregate Functions
	Grouping Data Using COMPUTE
	Adding Blank Fields
	Custom Shapes
	Conclusion

